Aiming at the problem that the well depth parameters in existing intelligent drilling technology can not be obtained underground, a multi-branch parallel neural network is proposed to solve the problem of downhole well depth tracking, and its effectiveness is verified by a field example. After analyzing and correcting the quality of the logging data collected on site by using DBSCAN (a density clustering algorithm), five parameters of WOB, rotating speed, displacement, pump pressure, and torque are selected to predict and calculate the downhole mechanical ROP. Adjust the structure of a traditional artificial BP neural network and design a multi-branch parallel neural network, change the basic architecture of the original hierarchical operation, make full use of the operation efficiency of a computer to realize parallel operation, and adopt the method of point-to-point depth comparison when evaluating the well depth tracking effect. The results indicate that the MAE and mechanical drilling rate evaluation values obtained were 1.18 and 0.873, respectively. The multi-branch parallel neural network achieved a 66.55% improvement in MAE compared to the original BP neural network, while the R2 evaluation method showed a 61.82% increase. The average point-by-point comparison error in the example calculation was 0.012 m, with a maximum error of 0.268 m. This result can serve as a fundamental basis for judging changes in well depth during the drilling process.
Loading....